

S. Mehrotra et al. (Eds.): ISI 2006, LNCS 3975, pp. 72 – 82, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Dictionary-Based Approach to Fast and Accurate
Name Matching in Large Law Enforcement Databases

Olcay Kursun1, Anna Koufakou2, Bing Chen2, Michael Georgiopoulos2,
Kenneth M. Reynolds3, and Ron Eaglin1

1 Department of Engineering Technology
2 School of Electrical Engineering and Computer Science

3 Department of Criminal Justice and Legal Studies,
University of Central Florida, Orlando, FL 32816

{okursun, akoufako, bchen,michaelg,
kreynold, reaglin}@mail.ucf.edu

Abstract. In the presence of dirty data, a search for specific information by a
standard query (e.g., search for a name that is misspelled or mistyped) does not
return all needed information. This is an issue of grave importance in homeland
security, criminology, medical applications, GIS (geographic information
systems) and so on. Different techniques, such as soundex, phonix, n-grams,
edit-distance, have been used to improve the matching rate in these name-
matching applications. There is a pressing need for name matching approaches
that provide high levels of accuracy, while at the same time maintaining the
computational complexity of achieving this goal reasonably low. In this paper,
we present ANSWER, a name matching approach that utilizes a prefix-tree of
available names in the database. Creating and searching the name dictionary
tree is fast and accurate and, thus, ANSWER is superior to other techniques of
retrieving fuzzy name matches in large databases.

1 Introduction

With the advances in computer technologies, large amounts of data are stored in data
warehouses (centralized or distributed) that need to be efficiently searched and
analyzed. With the increased number of records that organizations keep the chances
of having “dirty data” within the databases (due to aliases, misspelled entries, etc.)
increases as well 1, 2. Prior to the implementation of any algorithm to analyze the data,
the issue of determining the correct matches in datasets with low data integrity must
be resolved.

The problem of identifying the correct individual is indeed of great importance in
the law enforcement and crime analysis arenas. For example, when detectives or
crime analysts query for individuals associated with prior burglary reports, they need
to be able to examine all the records related to these individuals, otherwise they might
miss important clues and information that could lead to solving these cases. As
mentioned earlier, missing names (and thus records) becomes a problem mainly due
to common typing and misspelling errors. However, in the case of crime related

 A Dictionary-Based Approach 73

applications, this problem becomes even bigger due to other reasons, most important
of which being that criminals try to modify their name and other information in order
to deceive the law enforcement personnel and thus evade punishment. The other
reason is that for a large number of cases, the name information might come from
witnesses, informants, etc., and therefore this information (for example the spelling of
a name) is not as reliable as when identification documents are produced. This is also
true in the field of counterterrorism, where a lot of information comes from sources
that might be unreliable, but which still needs to be checked nevertheless. It is evident
then that it is imperative to have an efficient and accurate name matching technique
that will guarantee to return all positive matches of a given name. On the other hand,
the returned matches should not have too many false-positives, as the person who is
investigating a crime is likely to be overwhelmed by unrelated information, which
will only delay the solution of a case.

In this paper, we focus on the problem of searching proper nouns (first and last
names) within a database. The application of interest to us is in law enforcement;
however, there are many other application domains where availability of accurate and
efficient name search tools in large databases is imperative, such as in medical,
commercial, or governmental fields 3, 4.

There are two main reasons for the necessity of techniques that return fuzzy
matches to name queries: (1) the user does not know the correct spelling of a name;
(2) names are already entered within the database with errors because of typing errors,
misreported names, etc 5. For example, record linkage, defined as finding duplicate
records in a file or matching different records in different files 6, 7, is a valuable
application where efficient name matching techniques must be utilized.

2 Existing Methods

The main idea behind all name matching techniques is comparing two or more strings
in order to decide if they both represent the same string. The main string comparators
found in the literature can be divided in phonetic and spelling based. Soundex 8 is used
to represent words by phonetic patterns. Soundex achieves this goal by encoding a
name as the first letter of the name, followed by a three-digit number. These numbers
correspond to a numerical encoding of the next three letters (excluding vowels and
consonants h, y, and w) of the name 11. The number code is such that spelled names
that are pronounced similar will have the same soundex code, e.g., “Allan” and
“Allen” are both coded as “A450”. Although soundex is very successful and simple, it
often misses legitimate matches, and at the same time, detects false matches. For
instance, “Christie” (C623) and “Kristie” (K623) are pronounced similarly, but have
different soundex encodings, while “Kristie” and “Kirkwood” share the same soundex
code but are entirely different names.

On the contrary, spelling string comparators check the spelling differences between
strings instead of phonetic encodings. One of the well-known methods that is used to
compare strings is measuring their “edit distance”, defined by Levenshtein 9. This can
be viewed as the minimum number of characters that need to be inserted into, deleted
from, and/or substituted in one string to create the other (e.g., the edit distance of
“Michael” and “Mitchell” is three). Edit-distance approaches can be extended in a

74 O. Kursun et al.

variety of ways, such as taking advantage of phonetic similarity of substituted
characters (or proximity of the corresponding keys on the keyboard) or checking for
transposition of neighboring characters as another kind of common typographical
error 10 (e.g., “Baldwin” vs. “Badlwin”). The name-by-name comparison by edit
distance methods throughout the entire database renders the desired accuracy, at the
expense of exhibiting high complexity and lack of scalability.

In this paper, we propose a string-matching algorithm, named ANSWER
(Approximate Name Search With ERrors), that is fast, accurate, scalable to large
databases, and exhibiting low variability in query return times (i.e., robust). This
string comparator is developed to establish the similarity between different attributes,
such as first and last names. In its application to name matching, ANSWER is shown
to be even faster than phonetic-based methods in searching large databases. It is also
shown that ANSWER’s accuracy is close to those of full exhaustive searches by
spelling-based comparators. Similar work to ours has been described by Wang et. al.
4, which focuses in identifying deceptive criminal identities, i.e. in matching different
records that correspond to the same individual mainly due to false information
provided by these individuals.

3 The Operational Environment -- FINDER

One of the major advantages of our research is that we have a working test-bed to
experiment with (FINDER – the Florida Integrated Network for Data Exchange and
Retrieval). FINDER (see Fig. 1) has been a highly successful project in the state of
Florida that has addressed effectively the security and privacy issues that relate to
information sharing between above 120 law enforcement agencies. It is operated as a
partnership between the University of Central Florida and the law-enforcement

Fig. 1. The general overview of the FINDER network in Florida and expanded to other states

 A Dictionary-Based Approach 75

agencies in Florida sharing data – referred to as the Law Enforcement Data Sharing
Consortium. Detailed information about the organization of the data sharing
consortium and the FINDER software is available at http://finder.ucf.edu.

Part of the constraints of the FINDER system and also most law enforcement
records management systems is that once the data has entered into the system it must
remain intact in its current form. This includes data that have been erroneously
entered, and consequently they contain misspellings. This problem was identified by
the FINDER team and has also been substantiated in the literature 1, 12, 13, 14. A simple
illustration related to name matching, utilizing dirty data available in the FINDER
system, is shown in Table 1, which emphasizes both the level of data integrity and the
challenges of using standard SQL queries to retrieve records from a law enforcement
database (also known as merge/purge problems 14). In Table 1, we are depicting the
results of an SQL query on “Joey Sleischman”. An SQL query will miss all the
records but the first one. The other records could be discovered only if we were to
apply an edit distance algorithm on all the existing records in the database, an
unsuitable approach though, due to its high computational complexity, especially in
large databases. In particular, the rest of the records (besides the exact match), shown
in Table 1 were identified by comparing the queried record (“Joey Sleischman”)
against all records in the database (by applying the edit distance approach). The Last
Name, First Name, DOB (Date of Birth), and Sex were used as parameters in this
search. In order to detect the matching records, we assigned weights to the fields: Last
Name (40%), First Name (20%), DOB (30%), and Sex (10%). We used the edit
distance algorithm 9 for determining the degree of match between fields.

Table 1. Example of the Data Integrity Issues within the FINDER data

Last Name First Name DOB Sex Match
INPUT QUERY:

SLEISCHMAN JOEY 1/21/1988 M ≥ 85%

MATCHING RECORDS:
SLEISCHMAN JOEY 1/21/1988 M 100%
SLEICHMAN JOEY 7/21/1988 M 91%

SLEISCHMANN JOSEPH 1/21/1988 M 88%
SLEISCHMANN JOSPEH 1/21/1988 M 88%

SLEISHMAN JOEY M 87%
SLEISCHMANN JOEY M 87%

SLEISHCHMANN JOSEPH 1/21/1988 M 86%
SLESHMAN JOEY M 85%

As it can be seen in Table 1, the edit distance algorithm provides an excellent level

of matching, but the algorithm requires a full table scan (checking all records in the
database). This level of computational complexity makes it unsuitable as a technique
for providing name matching in applications, such as FINDER, where the number of
records is high and consistently increasing. In the next sections, we are discussing in
detail a name matching approach that alleviates this computational complexity.

76 O. Kursun et al.

4 The PREFIX Algorithm

In order to reduce the time complexity of the full-search of partially matching names
in the database (of crucial importance in homeland security or medical applications),
we propose a method that constructs a structured dictionary (or a tree) of prefixes
corresponding to the existing names in the database (denoted PREFIX). Searching
through this structure is a lot more efficient than searching through the entire
database.

The algorithm that we propose is dependent on a maximum edit distance value that
is practically reasonable. Based on experimental evidence, it has been stated that edit
distance up to three errors performs reasonably well 15. For example, “Michael” and
“Miguel” are already at an edit distance of three. Let k represent the maximum
number of errors that is tolerated in the name matching process. Using a minimal k
value that works well in the application at hand would make the search maximally
fast. Setting k to zero would equal to an exact search which is currently available in
any query system. Increasing k increases the recall (i.e., it will not miss any true
matches), even though this implies a very slow search and an increase in the number
of false positives.

PREFIX relies on edit distance calculations. Its innovation though lies on the fact
that it is not searching the entire database to find names that match the query entry but
accomplishes this goal by building a dictionary of names. One might think that it
would not be very efficient to have such a dictionary due to the fact that we would
still need to search the whole dictionary, as the spelling error could happen anywhere
in the string, such as “Smith” vs. “Rmith”. However, our algorithm can search the
dictionary very fast, using a tree-structure, by eliminating the branches of the tree that
have already been found to differ from the query string by more than k.

There are two key points to our approach: (1) Constructing a tree of prefixes of
existing names in the database and searching this structure can be much more efficient
than a full scan of all names (e.g., if “Jon” does not match “Paul”, one should not
consider if “Jonathan” does); (2) such a prefix-tree is feasible and it will not grow
unmanageably big. This is due to the fact that many substrings would hardly ever be
encountered in valid names (e.g., a name would not start with a “ZZ”); consequently,
this cuts down significantly the number of branches that can possibly exist in the tree.
Similar data structures are proposed in the literature 16, 17 but they are not as suitable
as ours when it comes to DBMS implementation (see Section 7).

The PREFIX algorithm creates a series of prefix-tables T1, T2, T3…, where Tn will
link (index) Tn+1. Tn will contain all n-symbol-long prefixes of the names in the
database. These tables correspond to the levels of the prefix-tree. The reason that we
use tables is to facilitate the implementation of this approach in any database system.
Tn will have the following fields: current symbol (the nth symbol), previous symbol
(n-1st symbol), next symbol (n+1st symbol), its links (each link will point to the index
of an entry in the prefix-table Tn+1 with this current entry as the prefix, followed by
the symbol in the “next symbol” field), and a field called Name that indicates whether
or not the prefix itself is already a name (e.g., Jimm is a prefix of Jimmy but it may
not be a valid name). Note that in the links field we cannot have more than 26 links
because there are only 26 letters in the English alphabet. Also note that the first
prefix-table (T0) will not utilize the previous symbol field.

 A Dictionary-Based Approach 77

Suppose that our database contains “John”, “Jon”, “Jonathan”, “Olcay”, “Jim”,
“Oclay”, and “Jimmy”. After building the prefix-dictionary shown in Fig. 2, it can be
used as many times as needed for subsequent queries. It is very simple to update the
dictionary when new records are added (the same procedure explained above, when
creating the tables in the first place, is used to add records one by one). Each level i in
Fig. 2 is a depiction of the prefix-table Ti (for example the third table consists of JOH,
JON, OLC, JIM, OCL). The dark-colored nodes in Fig. 2 are the prefixes that are
actually valid names as well.

Fig. 2. The tree obtained by processing “John”, “Jon”, “Jonathan”, “Olcay”, “Jim”, “Oclay”,
and “Jimmy”

The advantage of PREFIX is that when we search for approximate name matches,
we can eliminate a sub-tree of the above-depicted tree (a sub-tree consists of a node
and all of its offspring nodes and branches). Suppose that we search for any similar
names with no more than one edit-error to the name “Olkay”. When the algorithm
examines level two of the tree, (i.e., the prefix-table T2), it will find that the node JI is
already at a minimum edit distance of two from “Olkay”. Therefore any node that
extends from JI-node should not be considered any further. That is, any name that
starts with a JI is not going to be within the allowable error margin.

5 The ANSWER Algorithm

To use the PREFIX algorithm for a full name query rather than a single string query
(such as a last name or a first name only), we apply the following steps: (1) build
prefix-dictionary for the last names; (2) for a given full name query, search the tree
for similar last names; (3) apply edit-distance algorithm on the returned records to
obtain the ones that also have matching first names. In step 1, we could have built a
prefix-tree for first names and in step 2, we could have obtained matching first names
by scanning this tree; however, it would not have been as efficient as the stated
PREFIX algorithm because first names are, in general, less distinct; consequently, by
using first names at the beginning of the search process would have reduced our
capability of filtering out irrelevant records.

78 O. Kursun et al.

The PREFIX algorithm offers a very efficient search of names. Nevertheless, it
does not provide any direct way of utilizing a given first name along with the last
name of a query because it does not use the first name information during the search
of the tree. We propose the ANSWER (Approximate Name Search With ERrors)
algorithm for fast and still highly accurate search of full names based on the PREFIX
idea. In the process of building the prefix-dictionary, ANSWER takes every full name
in the database, and using the PREFIX algorithm, it creates required nodes and links
for the last names in the tree. It also augments each node in the tree by 26 bits, each
bit representing whether any last name on that branch has an associated first name
starting with the corresponding letter in the alphabet. For example, if the last name
“Doe” could be found in the database only with the first names “Jon”, “John”, and
“Michael”, the corresponding nodes in the “Doe” branch in the tree would be “linked”
with “J” and “M”, meaning that the last name “Doe” can only have first names
starting with “J” or “M”.

This architecture allows early (before the edit-distance exceeds the predefined
threshold k) pruning of tree nodes based on the first letter of the first name of the
query. For example, if the query name was “John Doe”, ANSWER would prune, say
the F-node, if there were no last names starting with letter “F” associated with a first
name that starts with “J”, the first letter of “John”. Based on our preliminary
experiments and what we deduced from the literature 5, 11, it is unlikely that both first
name and last name initials are incorrect (e.g., “Zohn Foe” is not an expectable match
for “John Doe”). On the other hand, PREFIX would not prune the F-node right away
because it does not take into consideration the first name at all, and there could be a
last name similar to DOE that starts with “F” (e.g., “Foe”). Thus, PREFIX would scan
more branches and take longer than ANSWER. Moreover, even though ANSWER is
not an exhaustive search algorithm, it exhibits high hit rate as explained in the
following section.

6 Experimental Results

In order to assess the performances of our exhaustive search engine PREFIX and its
heuristic version ANSWER, we conducted a number of experiments. After creating
the prefix-dictionary tree, we queried all distinct full names available in the FINDER
database and measured the time taken by PREFIX and ANSWER in terms of the
number of columns computed in the calculation of edit-distance calls (how edit-
distance computation works was explained in Section 4.2). This way, the effect of
factors such as operating system, database server, programming language, are
alleviated. Furthermore, we compared PREFIX’s and ANSWER’s performance with
other name matching techniques. In particular, we compared PREFIX and ANSWER
with two other methods: Filtering-based soundex approach applied on (1) only last
name (SDXLAST); (2) first or last names (SDXFULL). SDXLAST is a simple
method that is based on the commonly used soundex schema that returns records with
soundex-wise-matching last names, and then applies the edit-distance procedure (just
as in our methods, the edit-distance calls terminate the computation once the
maximum allowable edit errors k is exceeded) to the last names to eliminate the false

 A Dictionary-Based Approach 79

positives, and applies the edit-distance procedure once more on the first names of the
remaining last names, in order to obtain the final set of matching full names.

It is worth noting though, that the hit rate obtained by using only the soundex-
matches for the last names is insufficient due to inherent limitations of the soundex
scheme 11. For example, searching for “Danny Boldwing” using SDXLAST would not
return “Danny Bodlwing” because the soundex code for “Boldwing” does not match
the soundex code for “Bodlwing”. Therefore, we devised an extension of SDXLAST
in order to enhance its hit rate. We called this new method SDXFULL. SDXFULL
selects records with soundex-wise-matching last names or soundex-wise-matching
first names. As a result, if “Danny Boldwing” is the input query, SDXFULL would
return not only “Danny Bodlwing” and “Dannie Boldwing” as possible true positives,
but it would also return many false positives such as “Donnie Jackson” or “Martin
Building”. These false positives will be eliminated (by applying edit distance
calculations to all these returned records) as in the SDXLAST method. Thus, it is
expected that SDXFULL will have a higher recall (true positives) than SDXLAST but
longer run-time since it also returns a larger number of false positives). The low recall
rate of soundex is the reason for not comparing our methods with other phonetic-type
matching methods, such as Phonix 11. Phonix assigns unique numerals to even smaller
groups of consonants than soundex, and it is thus expected to have an even lower
recall rate than the already unacceptable recall rate observed in SDXLAST 11.

Our database contains about half a million (414,091 to be exact) records of full
names, out of which 249,899 are distinct. In order to evaluate the behavior of these
four name matching methods as the number of records in the database increases, we
have applied each one of the aforementioned methods (PREFIX, ANSWER,
SDXLAST, and SDXFULL) to the database at different sizes. For our experiments,
we have chosen 25% (small), 50% (medium), 75% (large), and 100% (x-large) of
records as the working set sizes. Note that a different prefix-dictionary is used for
different set sizes, as the number of records in the database expands from the small to
x-large sizes. We used the PREFIX algorithm as the baseline for our algorithm
comparisons, since it performs an exhaustive search. For our experiments we used a
maximum number of allowable edit-distance of 2 (k=2), for both last and first names.
Thus, for every query by the exhaustive search, we have selected from the database
all the available full names of which neither the last nor the first name deviates by
more than two errors from the last and the first names, respectively, of the query. Of
course, this does not mean all of these records with an edit distance of two or less
refer to the same individual but this was the best that we could use as a baseline for
comparisons because these names were at least interesting in respect that they were
spelled similarly.

Fig. 3a plots the graph of average run-times for queries of each approach as a
function of the database size. Note that in some applications, the hit-rate of the search
can be as important as (if not more important than) the search time. Therefore, in
order to quantify the miss rate, we have also computed the average hit-rates (the ratio
of the true positives identified versus the total number of actual positives) for these
methods (Fig. 3b). SDXLAST is the fastest search; however, it has the lowest hit-rate
amongst all the algorithms. Furthermore, SDXLAST’s hit-rate is unacceptably low
for many applications 5, 11. The ANSWER search is the next fastest for large databases
(except for SDXLAST, which has a small hit rate). ANSWER is also significantly

80 O. Kursun et al.

more accurate than the SDXFULL search. SDXFULL executes a simple search that
fails when there are errors in both the last and the first names (this happens in
increasingly more than 15% of the records). For instance, some of the records that are
found by ANSWER but missed by SDXFULL are “Samantha Etcheeson” versus
“Samatha Etcheenson” or “Yousaf Kodyxr” versus “Youse Rodyxr”.

Fig. 3. Scalability versus database size. (a) Run-times; (b) Recall rates.

7 DBMS Implementation

ANSWER offers a very efficient search of names. Its database system implementation
is not as fast, however it still remains to be a crucial tool of querying because it is a
full search tool. Other techniques we could use are either partial searches with 60%-
70% recall rates (such as soundex or phonix), or very slow (e.g. one pass over all the
distinct full names with Levenshtein comparison takes about 10 minutes in database
implementation). Soundex takes about half a second to query a name. However, it
misses matching records due to its weak heuristicity.

This does not come as a surprise because it is a problem in general that algorithms
implemented offline that use data outside the database system can employ efficient
structures that reside in memory and a minimal number of database scans, and thus
exhibit better performance than the equivalent database implementations. From the
performance perspective, data mining algorithms that are implemented with the help
of SQL are usually considered inferior to algorithms that process data outside the
database systems. One of the important reasons is that offline algorithms employ
sophisticated in-memory data structures and can scan the data as many times as
needed without much cost due to speed of random access to memory 18. Our initial
experiments with early efforts of DBMS implementation resulted that the run time for
ANSWER for k=1 is under a second. For k=2, the search time is in order of 5
seconds.

Disk-access is a very costly operation in database systems. Therefore, we will have
to reduce the number of database accesses needed for searching the tree. One idea is
to use the breadth-first search algorithm. For a query with a searched name of length n
and MaxError tolerable edit distance, the upper bound of the number of database
accesses is, therefore, n + MaxError.

In order to further reduce database access, when we import the names into prefix
tables, we can load the names in partial order so that the similar names are stored
together in prefix name tables. Names whose initial letters are “AA” are firstly
imported, then those with “AB”, “AC”, and until “ZZ”. This way, when we query

 A Dictionary-Based Approach 81

names, database server will automatically load and cache the data blocks with similar
prefixes, thus we can facilitate I/O accesses by reducing the number of memory
blocks to be retrieved.

8 Summary, Conclusions and Future Work

Dirty data is a necessary evil in large databases. Large databases are prevalent in a
variety of application fields such as homeland security, medical, among others. In that
case, a search for specific information by a standard query fails to return all the
relevant records. The existing methods for fuzzy name matching attain variable levels
of success related to performance measures, such as speed, accuracy, consistency of
query return times (robustness), scalability, storage, and even ease of implementation.

Name searching methods using name-by-name comparisons by edit distance (i.e.,
the minimum number of single characters that need to be inserted into, deleted from,
and/or substituted in one string to get another) throughout the entire database render
the desired accuracy, but they exhibit high complexity of run time and thus are non-
scalable to large databases. In this paper, we have introduced a method (PREFIX) that
is capable of an exhaustive edit-distance search at high speed, at the expense of some
additional storage for a prefix-dictionary tree constructed. We have also introduced a
simple extension to it, called ANSWER that has run-time complexity comparable to
soundex methods, and it maintains robustness and scalability, as well as a comparable
level of accuracy compared to an exhaustive edit distance search. ANSWER has been
tested, and its advantages have been verified, on real data from a law-enforcement
database (FINDER).

References

1. Kim, W. (2002) “On Database Technology for US Homeland Security”, Journal of Object
Technology, vol. 1(5), pp. 43–49.

2. Taipale, K.A. (2003) “Data Mining & Domestic Security: Connecting the Dots to Make
Sense of Data”, The Columbia Science & Technology Law Review, vol. 5, pp. 1–83.

3. Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S. (2003) “Adaptive name
matching in information integration”, IEEE Intelligent Systems, vol. 18(5), pp. 16–23.

4. Wang, G., Chen, H., Atabakhsh, H. (2004) “Automatically detecting deceptive criminal
identities”, Communications of the ACM, March 2004, vol. 47(3), pp. 70–76.

5. Pfeifer, U., Poersch, T., Fuhr, N. (1995) “Searching Proper Names in Databases”,
Proceedings of the Hypertext - Information Retrieval – Multimedia (HIM 95), vol. 20, pp.
259–276.

6. Winkler, W.E. (1999) “The state of record linkage and current research problems”,
Proceedings of the Section on Survey Methods of the Statistical Society of Canada.

7. Monge, A.E. and Elkan, C.P. (1997) “An Efficient Domain-Independent Algorithm for
Detecting Approximately Duplicate Database Records”, Proceedings of the ACM-
SIGMOD Workshop on Research Issues on Knowledge Discovery and Data Mining,
Tucson, AZ.

8. Newcombe, H.B., Kennedy J.M., Axford S.J., James, A.P. (1959) “Automatic linkage of
vital records”, Science, vol. 3381, pp. 954–959.

9. Levenshtein, V.L. (1966) “Binary codes capable of correcting deletions, insertions, and
reversals”, Soviet Physics, Doklady, vol. 10, pp. 707–710.

82 O. Kursun et al.

10. Jaro, M.A. (1976) “UNIMATCH: A Record Linkage System: User’s Manual. Technical
Report”, U.S. Bureau of the Census, Washington, DC.

11. Zobel, J., Dart, P. (1995) “Finding approximate matches in large lexicons”, Software-
Practice and Experience, vol. 25(3), pp. 331–345.

12. Wilcox, J. (1997) “Police Agencies Join Forces To Build Data-Sharing Networks: Local,
State, and Federal Crimefighters Establish IT Posses”, Government Computer News, Sept.
1997.

13. Maxwell, T. (2005) “Information, Data Mining, and National Security: False Positives and
Unidentified Negatives”, Proceedings of the 38th Hawaii International Conference on
System Science.

14. Hernandez, M., and Stolfo, S. (1998) “Real-world Data is Dirty: Data Cleansing and the
Merge/purge Problems”, Data Mining Knowledge Discovery, vol. 2, pp. 9-37, 1998.

15. Mihov, S., Schulz, K.U. (2004) “Fast Approximate Search in Large Dictionaries”, Journal
of Computational Linguistics, vol. 30(4), pp. 451–477.

16. Aoe, J., Morimoto, K., Shishibori M., Park, K. (2001) “A Trie Compaction Algorithm for
a Large Set of Keys”, IEEE Transactions on Knowledge and Data Engineering, vol. 8(3),
pp. 476–491.

17. Navarro, G. (2001) “A Guided Tour to Approximate String Matching”, ACM Computing
Surveys, vol. 33(1), pp.31-88.

	Introduction
	Existing Methods
	The Operational Environment -- FINDER
	The PREFIX Algorithm
	The ANSWER Algorithm
	Experimental Results
	DBMS Implementation
	Summary, Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

